STABILITY OF PERIODIC WAVES OF FINITE AMPLITUDE ON THE SURFACE OF A DEEP FLUID
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ABSTRACT: We study the stability of steady nonlinear waves onthe surface

of an infinitely deep fluid [1,2]. In section 1, the equations of hydro-
dynamics for an ideal fluid with a free surface are transformed to
canonical variables: the shape of the surface n(r, t) and the hydrody-
namic potential ¥(r, t) at the surface are expressed in terms of these
variables. By introducing canonical variables, we can consider the
problem of the stability of surface waves as part of the more general
problem of nonlinear waves in media with dispersion [3, 4]. The re-
sults of the rest of the paper are also easily applicable to the general
case.

In section 2, using a method similar to van der Pohl’s method, we
obtain simplified equations describing nonlinear waves in the small
amplitude approximation. These equations are particularly simple if
we assume that the wave packet is narrow. The equations have an
exact solution which approximates a periodic wave of finite amplitude.

In section 3 we investigate the instability of periodic waves of finite
amplitude. Instabilities of two types are found. The first type of in-
stability is destructive instability, similar to the destructive instability
of waves in a plasma [5,6]. In this type of instability, a pair of waves
is simultaneously excited, the sum of the frequencies of which is a
multiple of the frequency of the original wave, The most rapid de-
structive instability occurs for capillary waves and the slowest for
gravitational waves, The second type of instability is the negative-
pressure type, which arises because of the dependence of the nonlinear
wave velocity on the amplitude; this results in an unbounded increase
in the percentage modulation of the wave, This type of instability
occurs for nonlinear waves through any media in which the sign of
the second derivative in the dispersion law with respect to the wave
number (dzu/dkz) is different from the sign of the frequency shift due
to the nonlinearity.

As announced by A. N, Litvak and V. L. Talanov [71, this type of
instability was independently observed for nonlinear electromagnetic
waves.

1. Canonical variables, We consider the potential flow of an ideal
fluid of infinite depth in a homogeneous gravity field. We choose the
coordinates so that the undisturbed surface of the fluid coincides with
the xy-plane. The z-axis is directed away from the surface. In what
follows, all vectors are two-dimensional vectors in the xy-plane.

Let n{r, t) be the shape of the surface of the fluid and let &(z, 2, 1)
be the hydrodynamic potential. The fluid flow isdescribed by Laplace's
equation,
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with two conditions at the surface,
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and a condition at infinity,
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Here g is the acceleration due to gravlty and o is the coefficient
of surface tension.

Equations (1.1)-(1.3) conserve the total energy of the fluid,
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The first term in this expression is the kinetic energy and the
second and third terms are the potential energy in the field of gravity
and the potential energy due to surface forces. We introduce the quan-
tity ¥(r, t) = &(z, 1, t)j z=1° Specifying the quantities n and ¥ fully
defines the fluid flow since the boundary-value problem for Laplace's
equation has a unique solution. Using the equation
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Equations (1.2) and (1.5), together with Laplace's equation, are
equivalent to Egs. (1.1)=(1.3). We can prove that Eqs. (1.1) and (1.5)
can be put in the form
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Here E is the energy; the symbols 8E/81 and 8E/6V denote the
variational derivative.

Consider first the variation of ¥. Obviously, the variation of the
potential energy is zero. We transform the kinetic energy by means
of Green's formula:
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Here ds is a differential surface element. The normal derivative
8®/0n is linked with ¥ by the Green's function for the boundary-value
problem of Laplace's equation:
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Here s and s; are points onthe surface. The function G is symmetric;
i.e., G(s,s) = Glsy, %)
The variation of the kinetic energy has two terms:
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From (1.7) and the symmetry of the Green's function, we see that
both terms are the same:
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From this we obtain (1.2) instantaneously.

Consider now variation in 1 (this simple proof is due to R. M.
Garipov).

Variation of the potential energy at once gives the terms on the
lefi-hand side of (2.5). Variation of the kinetic energy gives
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Here 6@ is the variation in the potential due to a change in the
boundary. Since @satisfies Laplace'sequation, we can apply the Green’s
theorem to the second integrals
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Finally we have
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Hence we obtain (1.5).

Thus, Eqgs. (1.2) and (1.5) are Hamilton's equations and ¥ and 1
are canonical variables, ¥ being a generalized coordinate and 7 a
generalized momentum. The energy E of the fluid is the Hamiltonian.

To close Egs. (1.1) and (1.5) we have to solve the boundary-value
problem for Laplace’s equation. We find the solution of this problem
in the form of a series in powers of 1. If we apply a Fourier transforma-
tion to the variables x and y,
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we obtain the series in a more convenient form,

Omitting the details, we immediately give the result of the ex-
pansion (up to second-order terms):
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Here § denotes the delta function.

If we linearize (1.2) and (1.5) and consider only the first term in
(1.8), we obtain the theory of small oscillations for the surface of a
fluid, which describes the propagation of waves with dispersion law
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We now complete the transformaticn to the complex variable a(k)
via the equations
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Transformation (1.9) can be considered a canonical transformation
(with complex coefficients) to the variables ig*(k) and a(k); Hamilton's
equation {1.6) becomes the single equation
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Using (1.4), (1.8), and (1.10), we can express the energy in the
form of a series in powers of a(k) and a*(k):

E:Sm(k)a(k) a* (k) dk +SE/(_ K, kg, ko)X

X [a* (k) 2 (ky) a (ka) 4 a (k) a* (k) a* (ks)] X

X 8 (k— ki — kZE]dk dky dks -

1
+ §SE/ (k, ki, ko) [a* (k) a* (ky) a* (ka) + @ (k) a (ki) @ (K2)] X

X 8k —ky — kgﬂ(’k dky dky +
-
oy o,k i r 09 0 o a 0 )

X §(k +ky — kg—ksz]dk dky dks dky, (L10)

where

V ik, ky, ko) =

1 ‘ o (k) @ (ky)y s —
= a7 0k e () ) < i e

ro k) o (kg))‘/z |k | R
o (ky) (lkllkzl) T

k) © (kKo)\ e K| e .
+ [l -+ [l [ ) (2220 (rerer) s @

Wk, ki, ko, k) =

3 (K[ ke ke
T8 oK) o (k) o (k) o (k)]

7, (iks) (o) -+

1 1
+ 5@ (K ka Tke] T ) x

) @ (kyT?
{[oets] erxl 42—k 11—

—k—kg|—|ky— kg | — | ky— kg [} +

k. k A
+ [t @k 421k

—{k—J | — |k —kg]— ki —kp | — | by — Ky |) —

1/2
M] @21k |+ 2]k [

~|ketkg|—|k—ko| —|k— k| — ki + kg |) —

~ [afot

o (k) (ko)]" .
_[m] 2k + 21 ks ] —

— ket k=g —te]—k—k|—{k+ k]

o (k) o (k)" ;
[ = et b

+20k |+ 2 ke | — |k — ki | — [k —ks |~ |k + ko [) -

o (k1) o (kz)77
~[6ﬁ<r3] @1k | 21 ke]—

— bRl — kK| = Kk | — koD (118)

There are other fourth-order terms in @, proportional to products of
the form ¢*eaa and aaaa and terms conjugate to them, These are ig-
nored, since, as will be shown in section 3, their contribution is small.

We note that the functions V and W obey the following equations:

V(k, k, kz)—_-V (k, kg, ki) =V (ks, kg, k),
V(—k, —ki, —ko)=V(k, ky, ko),

Wk, ki, ko, kg) =W (kq, k, ks, ky) = (1.14)

=W (k, kq, ks, ko) = W (ky, ks, Kk, ky),

Wi—k, —ki, —kg, ko) =W (k, ky, ky, ky).

The equation for a{k) has the form
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We se€ from (1.15) that the variables a(k) are the normal variables
in the problem of small oscillations.

2. Simplified equations, Equation (1.15) is an approximation and
is valid for small nonlinearities, roughly speaking, for a/A << 1, where
a is the characteristic amplitude of the wave and A is a characteristic
wavelength. In this approximation, we can make a considerable sim-
plification in Eq. (1.12). To do this we write a(k) as

a (k) = [4 (k, 1) + f(k, )] exp [— i (K} ¢]. 2.1)

We assume that A(K, t) changes slowly in comparison with f,
where f < A, We substitute a(k), in the form of (2.1), into the equa-
tion for f and the one for A, In the equation for f we retain only terms
which are quadratic in A. Assuming A constant as F varies, we inte-
grate this equation with respect to time. This yields
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In the equation for A we retain only those terms proportional to
A f which contain the most slowly varying exponents. Obviously, all
the slowly varying exponents are contained in those terms proportional
to A*AA. Gathering all these terms together, we obtain
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Obviously, the terms omitted from the Hamiltonian (1.11) cannot

contribute to (2.4).

In using (2.3), we have to assume that f < A. For this condition
to be satisfied, it is necessary that the denominators in (2.2) and(2.4)
do not vanish. There is a zero denominator if ’

o k) = o (k) + o k), k=k +k (2.5)
have a solution.

1f this system has no solutions, Eq. (2.4) can be used for sufficiently
small a/A,but if it has a solution we have to assume additional restric-

tions.
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If w(k) is a monotonic function, we note that a sufficient condition
for the existence of a solution to (2.5) is

o k) >o k) + o & — k), (2.6)

where k and k; are in the direction of the same straight line, Indeed,
if (2.6) holds, by adding to k; components perpendicular to k, we

can increase the right-hand side of (2.6) and convert (2.6) into

an equation, On the other hand, if the inequality converse to (2.6)
holds, this is a sufficient condition for the absence of solutions to(2.5).
For gravitational waves, with the dispersio'n law
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an inequality converse to (2.6) holds. Accordingly, (2.5) cannot have
any solutions and for small a/A (2.3) applies. For capillary waves
[k > (g/a)l/zj, with dispersion law w(k) =V k |* (2.6) holds, so that
(2.3), in general, cannot be used; if it is assumed that the wave packet
is sufficiently narrow, i.e., if a(k) is nonzero for ! k - kal < kg, Eq.
(2.5) cannot be zatisfied for any w(k). Hence, assuming the wave packet
is narrow, Eq. (2.6) is applicable for any dispersion laws, in particular,
for capillary waves.

Assuming the wave packet is narrow, we can make a further sim-
plification in Eq. (2.3). We introduce the variable % =k — ky and
expand w(k) in powers of ¥ to terms of second order:
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Here My and %y are the projections of the vector  both paraliel
and perpendicular to the vector Ko; ¢ is the group velocity of the waves:
Ay is an eigenvector of the tensor Dyg. Next we replace the approxi-

mation T(K, Ky, Ky, ks) by w = T(Ky, ko, ko, ko) and introduce the variable
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We note that Ay is always positive, while A|f vanishes for ko = kj:
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For ko < ki, K” is negative, and for Ko > ki, A| is positive. We apply the
inverse Fourier transformation with respect to %:
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Here b(x, y,1) is the envelope of the wave packet. We obtain
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To simplify the equation further we introduce the variable § = x —

— ct (which corresponds to transformation to a system of coordinates

moving with a velocity equal to the group velocity of the wave);

we assume that the solution depends only ont and z = £ cosa +y sina;

we obtain
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Equation (2.3) has the exact solution

A (k) = by 8 (k — ky) exp [— iQ (K], Q (k) = w b . (2.10)
Here by is an arbitrary constant. In terms of the variables 7 and ¥,
solution (2.10) has the form

N = acos (kx — ot), ¥ = a sin (kz — L),
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Calculation yields
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In the limit, for small k this takes the form (k) = Y,(ka)’w(k),
which coincides with the expression obtained by Stokes in 1847. Thus,
solution (2.9) approximates a periodic wave of finite amplitude.

When

a ‘/2
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the frequency displacement becomes infinite; for largek, it is negative.
In the limit, as k = « we have

1
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3. Stability of steady waves of finite amplitude. We consider the
development of small perturbations against the background of a steady
periodic wave. We seek a(k) in the form

a (k) =Dbd (k — ko) ™! L a(k, ) e, 0=0(k)+ Qk).(3.1)

We assume c(k) to be small in the sense that
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Now we make (1.15) linear in o(k). To do this, we consider only
terms on the right-hand side which vary slowly with time. We obtain
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Eliminating o*(ke — k) from (3.2), we obtain
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Equation (3.3) has a solution of the form
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Instability will occur if the expression under the square-root sign
is positive. In order that there should be instability for arbitrarily small
bg, the equation y = 0 should have a solution. If we neglect the small
term Q(ky) in this equation, we arrive at the system of equations (2.5).
As was established in section 2, this system can be solved for capillary
waves; thus, instability of this type occurs for capillary waves. Un-
stable wave vectors are concentrated near the surface w(k) = w(k;) +
+ w(k — k;) in a layer of thickness proportional to the amplitude. The
maximum increment in the instability is of order Req ~ (ka) w(k).

This type of instability is impossible for gravitational waves. How-
ever, for these waves slower instabilities are possible. We use Eq. (2.3)
and substitute into it A(k) in the form

A (k) = bod (k — ko) O Lok, 1) -
If we linearize in ofk, t), we obtain

do (k)
3 = 2T (K, ko, Ko, K)o % (k) +

+ U ke 9k — K, ko, ko) by® 2Ky — k) -

This equation can be reduced to an equation of form (3.2); it has
a solution proportional to eqt, where, for q, we have

=116 4 Vb PT% (k, 2ko — k, ko, Ko)> — 1/ 48%

8= (k) + o (2ko — k) — 20 (ko) -+ 2 [ bo [* [T (k, ko, Ko, k) +
+ T (2ko —k, ko, ko, 2ko — k) — T (kq, ko, ko, ko) , (3.9)

Consider first the case
do
|k—koiﬁ>>w]b|3_ (3.6)

Then terms proportional to b” can be dropped from (3.5). The con-
dition for the existence of instability for arbitrarily small amplitudes
is 6 =0, which is equivalent to the existence of solutions for the equa-
tions

20(k)=0 (ki) +- o (ke), 2k=ki+kes . 3.1

Obviously, these equations have solutions if
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(a sufficient condition), where the vectors k; and k, are parallel to the
same siraight line. Inequality (3.8) is the requirement that w(k) be
convex upwards. For gravitational waves,

()

and the inequality necessarily holds,

Conversely, for capillary waves, the inverse inequality holds, in-
dicating that instability of this type is impossible.

Equation (3.7) defines a surface in k-space. Unstable vectors lie
near this surface in a layer of thickness proportional to b?. The maxi-
mum increment in the instability for gravitational waves is of order

P~ (ka)t © () -

There are higher-order instabilities corresponding to conservation

laws for m:
no (k) = o (k) + o (ky), ak =k, -k,

The order of the increment for such instabilities is y(k) ~ (ka)2w(k).

All these instabilities can be called destructive.

We turn now to instabilities for which ! ky - kna < koo To study
these we use Eq. (3.3) directly. The solution

b = by exp (— iwibgf*t)

corresponds to a completely finite amplitude.

We now seek the solution in the form

¥ — exp (___ iw [ by l-_vl) (bo + 3w{,—iuui(ixn: - u*ei,ui~~iz“;)1

o< ko .

Then for w we have
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We see from (3.9) that instability is possible if wA <0, instabilities
only being excited for sufficiently small wave vectors

. hw
Mo® < b2 .

We consider the case of different wave numbers for the surface
waves.
1. In the region of wave nmumnbers

ke <V V= tig/0',

where w >0, Ay >0, and f\“ <0, the domain of instability in the
plane %y, % is bounded by the inequalities 0 < | K“ Mfc - k_'_%; <
< 4|bl%; ie., it lies between the hyperbola

aofw =k yu® — b n 2

and its asymptotes,
2. In the domain

VVTit@/ae <<t/ Vg0

where Ay >0, Af| >0, and w >0, instability, in general, is impossible,
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3. In the domain of capillary waves
ke>1/ V2(e/ay® by >0, 0 >0,w<0,
the region of instability is the interior of the ellipse
Ay A wyP = 4fb Pw .

In (2.9) we make the change of variables

Y=V rnexp [TLS vdz] .
Equation (2.9) becomes

on a
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These equations are similar to the equations of gasdynamics with
an adiabatic relationship between the pressure and the density,

whn?
=

and differ from them by an additional term containing the third de-
rivative with respect to z. If we consider a sufficiently large-scale
motion with characteristic scale L, then for

1 2wngy
T<7

this term may be neglected. For positive pressure wA > 0, Eq, (3,10)
describes sound waves of velocity YwAng. For negative pressure, the
speed of sound becomes {maginary, which means that the initial per-
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turbations increase exponentially as

v~exp(t Vwk[ng).

Hence we have the case of a negative-pressure type of instability.

We note that (3.9) can be obtained for the increment in the nega-
tive pressure instability if we let k = kg in (8.5). Thus, negative -pres-
sure instability is the limiting case of slow destructive instability of
gravitational waves,

The author wishes to thank L. V. Ovsyannikov and R. Z. Sagdeev
for fruitful discussions.
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